Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(42): 21750-21756, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33094782

RESUMO

Using ab initio quantum-transport simulations, we studied the intrinsic transfer characteristics and benchmarks of the ballistic performance of 5.1 nm double-gated Schottky-barrier field effect transistors (SBFETs) consisting of in-plane (IP) heterojunctions of metallic-phase (1T or 1T') MTe2 (M = Ti, Zr, Hf, Cr, Mo, W) and semiconducting-phase (2H) WSe2, WTe2 and Janus WSeTe. The 2H-phase Janus WSeTe is a semiconductor with an indirect bandgap (1.26 eV), which is less than the bandgap of 2H-phase WSe2 (1.64 eV) and is greater than the bandgap of 2H-phase WTe2 (1.02 eV). The band alignments show that all IP 1T/2H contacts are Schottky-barrier contacts with the Fermi levels of 1T or 1T' MTe2 (M = Ti, Zr, Hf, Cr, Mo, W) located within the bandgaps of 2H WSe2, WTe2 and Janus WSeTe. Although double-gated IP WSe2-SBFETs can satisfy the OFF current requirement, their ON currents all fall below the requirements of the high performance transistor outlined by the ITRS (International Technology Roadmap for Semiconductors, 2013 version) for the production year 2028. Double-gated IP WTe2-SBFETs cannot overcome the short channel effect leading to minimum drain currents all beyond the OFF current requirement of ITRS (2013 version) for the production year 2028. Fortunately, double-gated IP WSeTe-SBFETs with 1T MoTe2 or 1T' WTe2 electrodes can overcome the short channel effect and satisfy the requirements of the high-performance transistor outlined by the ITRS (2013 version) for the production year 2028.

2.
Phys Chem Chem Phys ; 20(8): 5699-5707, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29410993

RESUMO

The effects of the staggered double vacancies, hydrogen (H), 3d transition metals, for example cobalt, and semiconductor covalent atoms, for example, germanium, nitrogen, phosphorus (P) and silicon adsorption on the transport properties of monolayer phosphorene were studied using density functional theory and non-equilibrium Green's function formalism. It was observed that the performance of the phosphorene tunnel field effect transistors (TFETs) with an 8.8 nm scaling channel length could be improved most effectively, if the adatoms or vacancies were introduced at the source channel interface. For H and P doped devices, the upper limit of on-state currents of phosphorene TFETs were able to be quickly increased to 2465 µA µm-1 and 1652 µA µm-1, respectively, which not only outperformed the pristine sample, but also met the requirements for high performance logic applications for the next decade in the International Technology Roadmap for Semiconductors (ITRS). It was proved that the defect-induced band gap states make the effective tunneling path between the conduction band (CB) and valence band (VB) much shorter, so that the carriers can be injected easily from the left electrode, then transfer to the channel. In this regard, the tunneling properties of phosphorene TFETs can be manipulated using surface defects. In addition, the effects of spin polarization on the transport properties of doped phosphorene TFETs were also rigorously considered, H and P doped TFETs could achieve a high ON current of 1795 µA µm-1 and 1368 µA µm-1, respectively, which is closer to realistic nanodevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...